

# Co-designing low-pesticide input cropping systems with the STEPHY guide



#### Marie-Sophie PETIT

JTN for 'innovative cropping system' Chambre d'Agriculture de Bourgogne, FR





## Joint technology Network for 'innovative cropping system'

- ~100 agronomists
- Objectives
- Design and develop innovative cropping systems
- Create and develop a network of skills in polyculture, mixed farming & vegetables systems
- Innovative cropping system :
  - **Deal with societal issues** (water management, energy and gas emissions, biodiversity, ...) **and economic performances**
  - Results as much from the combinations of existing crops and techniques, than from the introduction of new crops and techniques

- What is it for ?
- Co-design cropping systems\*\* less reliant on pesticides
- Evaluate the alternative cropping systems
- Train the co-designing for cropping systems
- For whom ?
- Advisers, farmers, R&D engineers, searchers, trainers, students, ...

- Not just a new technical guide !
- It is a system approach ...
- Aimed for significant reduction in pesticide use, for solving problem
- to broaden the options available for change in cropping systems
- Taking into account economical and environmental goals
- Best if used in a group discussion (more brains broaden the horizon)

- How to use it ? with ...
- groups of farmers
- mixed groups composed of farmers, advisers, searchers, ...
- groups of students
- binomial farmer and his adviser...





- Comprehensive programme
- Rapid programme









Understand the overall objectives of the farmer, assets and contraints

Identify the cs\*\* of the farm and the problematics

Rotation 2

Crops: pea-wheat-rape-wheat

#### Priority tasks

Sowing, harvesting autumn crops Fertilisation, weeding

Fewer interventions in the fields because he does not live close Reduce the use of pesticides because of health

Farmer's priorities

#### Workforce

1 MWU for 73ha Mutual aid for harvesting and other operations => Frees some time

#### Equipment/material

Equipment available for mechanical weeding Shared equipment with Several farmers => problems of availability

Location of fields

Lives some distance from fields

ields located in 2 sites 15km apart

⇒desire to save time spent on travelling and observations

concerns and desire to reduce energy costs

#### Rotations Rotation 1

% on F: 70% % on F: 30%

Crops: rape-wheat-barley

plobahing/SCT/direct sowing

-wheat Most common planting method Most common planting method:

#### ploughing/SCT/direct sowing Rotation 3 Succession 4

% on F: % on F: Crops: Crops:

Most common planting method: Most common planting method: ploughing/SCT/direct sowing ploughing/SCT/direct sowing

#### Production system

UAL=73 ha: small area => mechanical weeding can be envisaged

#### Milieu (soil/climate)

Good potential: medium loam on plateau => No particular constraints in the milieu

#### Local issues

Situation where some fields border water source with N and pesticide issues Contracted for an AEM 'conversion to integrated agriculture'

#### Crop enemies

Principal problems: foxtall and grain yield in Cereals, animal pests in rape (aphids, shiny weevils)

Average pressure: septoria in wheat, sclerotinia in rape, bistort and bindweed in pea

#### Technical-economic environment

Neighbouring livestock farms=> possible market Possibilities for selling flax privately Possible markets for peas



### Step 2: Co-design of alternative cs

- Define the objectives of design ('rupture' level)
- Identify the available crop & techniques ... to broaden the horizons for changes
- Combine the rotation and cropping management plan per crop in an alternative cs





## Step 3 : Evaluating alternative cropping systems

- → Evaluate cs
  - qualitative evaluation of results and performances
  - multicriteria and quantitative evaluation in the results and performances → STEPHY calculator



- Agronomic adn technical results
- ▶ Input pressure (TFI, N balance, ...)
- Environmental, economical and social performances (DM, energy efficiency, consumption, ...)



### Step 4: Discussion of results

Introduce and discuss the alternative cs suggested

Example of co-design with farmers in mixed farming system On hydromorphic soil in Loire Atlantique (herbicide TFI = 1,2)



## 5 key roles in this co-design Operator of **Expert in** Leader of **Animator** local change knowledges **Expert in** exploratory knowledges Réseau Mixte Technologique Systèmes de Culture Innovants

## Trainings with the STEPHY approach

- 1 200 advisers in France
- 300 farmers
- ▶ **300** students
- 80 trainers

- Next step after training:
  - → DARE a co-design activity or workshop !!

- ▶ a universal approach (tested and approved in polyculture, mixed farming systems but also in vegetables, tropical and perennial systems)
- The collective, a ressource ...
- a way for learning about techniques thanks to exchanges between people involved in the process
- No just a guide but ... mainly a posture that put the people in a 'de novo' approach (≠ 'step by step') and allow them radical changes for radical innovation

## Resources

STEPHY pratical guide

www.endure-network.eu



















Agro-PEPS <a href="http://agropeps.clermont.cemagref.fr/">http://agropeps.clermont.cemagref.fr/</a> collaborative website about technical informations and exchanges

Thank you for your attention!

